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Abstract. A simple model has been considered to obtain the reversible temperature depen- 
dence of the static structure factors S(q)  for liquid metals. The measured values of S ( q )  near 
the melting point have been utilised to obtain the same at elevated temperatures for Na, K,  
Mg, Zn, AI and Pb. The notion of Debye temperature in liquid metals has been discussed. 
The principal peak heights of S ( q )  computed at the melting temperature have also been 
discussed in the light of Verlet’s freezing rule. The electrical resistivity and thermo-electric 
power of these metals have been computed as a function of temperature. The success and 
failure of the Ziman formula have been critically assessed. 

1. Introduction 

The static structure factor S(q) occurs as an important ingredient in the calculation of 
the electrical transport and thermodynamic properties of liquid metals. The structure 
and forces in liquid metals are also derivable (March 1987) from the knowledge of 
S(q). The coordination number in the liquid metals is also determined from the area 
underneath the first peak (Waseda 1980). Verlet’s freezing rule (Verlet 1968) further 
emphasises the importance of S(q ) ,  and suggests that the first peak height of the structure 
factor reaches a value of about 2.8 at the freezing point. 

Thus knowledge of the thermal dependence of S(q )  is of great importance to under- 
stand the behaviour of liquid metals near the melting point as well as at elevated 
temperatures. It is well known that S ( q )  is experimentally determined by either x-ray or 
Neutron diffraction measurements, which involves an intricate process. Obviously the 
availability of S(q)-T data is limited. We, therefore, attempt here a theoretical model 
to obtain the thermal dependence of S(q). 

It is well known that the positional correlation of atoms in the liquid state and in 
the amorphous state is relatively strong within the near-neighbour region. The same 
diffraction theory (Wagner 1978, 1980, Waseda 1980) has been used to deduce the 
structural disorder in liquids as well as in amorphous solids. The experiments have 
revealed that the diffraction pattern for the two states are quite similar. Recently Meisel 
and Cote (1977,1978) have used a Van Hove (1954) dynamic structure factor to obtain 
a relation between S(q) and T for amorphous materials. The same basic idea has been 
utilised here to obtain the thermal dependence of S(q) for liquid metals. The results 
obtained for Na, K, Mg, Zn, A1 and Pb are very encouraging. 
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The thermal dependence of S ( q )  as obtained here has been utilised to compute the 
electrical resistivity and thermo-electric power of monovalent (Na, K) and polyvalent 
(Mg, Zn, Al, Pb) liquid metals as a function of temperature using Ziman’s (1961) 
formula. The pseudopotential matrix elements required at different temperatures have 
been computed in the framework of fully non-local optimised model potential theory 
(Shaw 1968, Appapillai and Williams 1973). 

We shall see in 0 2 that S ( q )  at other temperatures can be calculated from knowledge 
of the observed S ( q )  at any given temperature. The results for Na, K, Al, Mg, Zn and 
Pb have been presented. In § 3, Verlet’s freezing rule has been discussed in the context 
of the first peak height obtained at the freezing point. Further, the computed S(q)-T 
values have been utilised in $ 4  to compute the electrical resistivity and the thermo- 
electric power of liquid metals at elevated temperatures. 

2. Temperature dependence of static structure factor 

2.1. Basic relations 

The static structure factor S ( q )  may be defined by the integral of the coherent scattering 
law over all energy (hw) transfers at constant q ,  i.e. 

The coherent scattering law, S ( q ,  w), is usually known as the Van Hove (1954) dynamic 
structure factor and can be expanded in n-phonon terms like 

S ( q ,  w) = &(q,  w) + S1(q, w) + . . . . P a )  

So(q, w) denotes the elastic term, i.e. 

So(q9 w) = a(q) exP[-2Wdq)16(w) 

where exp[-2WT(q)] is the Debye-Waller factor and 

Here ( ) denotes the ensemble average over the ionic positions r, and r,. The phonon 
part S , (q ,  w) is defined as 

where h is Planck’s constant, M is the ionic mass and the sum runs over the a branch of 
the phonon spectrum. n(w) is given as 

n(w) = (ex - I)-’ x = hw/k,T. (3b) 

In analogy with (2a), Meisel and Cote (1977) defined a model dynamic structure factor 
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Table 1. Debye temperature OD corresponding to solid and liquid metals. 

Solid phase, Liquid phase, 
Metal Ob (K) O b  (K) (Os, - f%,/es, (%I 

Na 158 111.5 29.4 
K 163 50 69.3 
Mg 290 175 39.6 
Zn 250 172 31.2 
XI 394 143 63.7 
Pb 88 54.2 38.4 

for amorphous and disordered solids and obtained a temperature-dependent static 
structure factor, i.e. 

S d q )  = 4 q )  exp[-2W,(q)l + AT(qN1 - exp[-2Wdq)l) (4) 
where S,(q) is the structure factor at temperature T.  A,(q)  is a coarse average of the 
structure factor a ( q )  at all temperatures and can safely be approximated to A,(q) -+ 1. 
Thus from (4) one has 

S d q )  - 1 = [ a ( q )  - 11 exP[-2WT(q)l ( 5 )  
where WT(q)  is the Debye-Waller factor 

Here 8 ,  is the characteristic temperature for liquid metals, which we will call the Debye 
temperature for convenience and will be treated as a parameter. Though the expression 
(4) has been specifically obtained for disordered solids, it can be safely used for other 
structurally disordered systems with suitable choice of OD. If ST1 ( q )  and S,,(q) refer to 
structure factors at two different temperatures T I  and T2 then equation ( 5 )  can be 
expressed as 

Equations (7) and (8) enable us to write 

S T Z  ( 4 )  = 1 + [ST1(4) - 11 eXP{-2[W,, ( 4 )  - WT1(4)1). (9) 

Thus if the structure factor at any temperature T I  is known, then the structure factor at 
the desired temperature T2 can be calculated from equation (9). 

2.2. Results 

The observed (Waseda 1980) values of the structure factors at temperature T I  have been 
used in equation (9) to compute the structure factors at other temperature T,. The only 
unknown quantity in the expression is the characteristic temperature OD, which has 
the same significance as the Debye temperature has in solid and amorphous phases. 
Obviously OD represents the character of the atomic motions in the liquid phase and has 
been assumed constant over the temperature range of interest. For want of better 
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knowledge of BD for liquid metals, we fixed it with the help of equations (6) and (9) to 
obtain the correct height of the principal peak in the structure factor at any given 
temperature. These are tabulated in table 1. We are tempted here to compare OD of the 
liquid metals obtained to that of the solid metals (Mott and Jones 1936). It is evident 
that 8 D  of the liquid phase is less than that of the corresponding solid phase. This might 
be linked to the softening of phonons on melting. 8, decreases by about 30% in Na and 
Zn and by about 40% in Mg and Pb. The maximum deviation occurs in A1 and K, which 
is around 60%. In this context we draw attention to the fact (Faber 1972) that the 
frequency falls by some 40% in going from solid to liquid phase. Weiss (1984) has also 
qualitatively suggested the lowering of Debye temperature in liquids. 

S(q) computed for liquid metals Na (373,473,573 and 723 K), K (343,378,473 and 
723 K), Mg (953,1063,1153 and 1173 K), Zn (723,833,933 and 1053 K), A1 (943,1023, 
1173 and 1323 K) and Pb (613, 823, 1023 and 1173 K) at different temperatures are 
displayed in figure 1 and have been compared with the experimental values (Waseda 
1980) wherever available. It may be emphasised that the same value of OD as in table 1 
has been used in the calculation of S(q) corresponding to different temperatures. The 
value obtained by the theoretical model and that by diffraction measurements are in 
very good agreement for Mg and Zn over a wide range of temperature. In the case of K 
overall agreement is quite good up to around 500 K but at higher temperature (723 K) 
our calculated S ( q )  undergoes an abrupt fall in the first peak height unlike the observed 
value. The results for Na, A1 and Pb are also in very good agreement with the observed 
values except at very high temperature where our first peak height is lower than the 
observed values. 

The effect of temperature on S(q)  above the melting point is self-evident in figure 1. 
As we go up from the melting point, the peaks tend to become flatter and broader. 
The first peak height decreases gradually whereas its width increases on raising the 
temperature. The oscillation in S(q) at higher q-values becomes progressively more 
damped and S(q)  tends to unity-a situation of completely random gas-like structure. 
Though the position of the first peak is not visibly affected, the area under the first 
peak (which characterises the coordination number) slightly decreases with rise in 
temperature. The values of the first peak height and its position as a function of tem- 
perature is tabulated in table 2. 

3. Verlet’s freezing rule 

Verlet (1968) pointed out that the principal peak height of the static structure factor of 
liquids approaches a value of about 2.8 as the temperature is lowered to the freezing 
point. Usually Verlet’s rule is tested against experimental data. But we may recall that 
the measured S ( q )  normally corresponds to a temperature higher than the melting point. 
For example, the measured S(q) for Mg refers to 953 K which is about 30 K higher than 
the melting point. The first peak height is very sensitive to temperature and therefore 
we estimate the same at the melting point from the model. In view of this, the present 

Figure 1 (opposite). Static structure factor of liquid metals at different temperatures (full 
curves, present values; points, observed experimental values (Waseda 1980)): (a )  Na at 373, 
473,573 and 723 K; ( b )  K at 343,378,473 and 723 K;  (c) Mg at 953,1063,1153 and 1173 K; 
(d) Zn at 723,833,933 and 1059 K; (e )  AI at 943,1023,1173 and 1323 K; and (f) Pb at 613, 
823,1023 and 1173 K. 
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Table 2. The position and height of the first peak of S(q) as a function of temperature. 

First peak First peak 
Metal T (K) height in S(q)  position 

Na 373 
473 
573 
723 

K 343 
378 
473 
723 

Mg 953 
1063 
1153 
1173 

Zn 723 
833 
933 

1050 

AI 943 
1023 
1173 
1323 

Pb 613 
823 

1023 
1173 

2.722 -2.027 
2.413 
2.372 
1.840 

2.622 
2.448 
2.406 
1.374 

2.562 
2.402 
2.237 
1.881 

2.542 -2.900 
2.435 
2.392 
2.285 

2.476 -2.710 
2.279 
2.240 
1.634 

2.492 -2.300 
2.158 
1.980 
1.760 

-1.630 

-2.420 

Table 3. Principal peak heights of the static structure factor at melting temperature (T,,,). 

Melting temp., Principal peak Second nearest 
Metal Structurea T,,, (K) height peak height 

Na BCC 370.8 2.73 1.21 
K BCC 336.7 2.68 1.07 
Mg HCP 923.0 2.61 1.29 
Zn HCP 692.5 2.58 1.26 
A1 FCC 932.0 2.51 1.31 
Pb FCC 600.4 2.51 1.32 

a This refers to solid-phase structure. 

model, which provides a reversible temperature dependence of S ( q ) ,  has been used to 
compute the principal peak height of liquid metals down to the melting temperature and 
thus Verlet’s rule has been tested. It has been observed that the principal peak height of 
S ( q )  of liquid metals slowly increases with decrease in temperature. 

The computed values of the principal peak height and second nearest peak height 
for Na, K, Mg, Zn, A1 and Pb at the melting temperatures are recorded in table 3. The 
values indicate that the peak heights at the melting point depend slightly on the previous 
crystal structure. For BCC metals (Na, K) the principal height is around 2.7; for HCP 



Structure of liquid metals 1701 

metals (Mg, Zn) it is around 2.6; whereas for Fccmetals the first peak height approaches 
a value 2.5. Recently, March (1987) has also discussed Verlet’s freezing rule in terms of 
the principal peak height of the static structure factor. 

4. Electrical transport in liquid metals at elevated temperatures 

Since the advent of the diffraction model (Krishnan and Bhatia 1945, Bhatia and 
Krishnan 1948, Ziman 1961) it has been widely used to compute the electronic properties 
of liquid metals near the melting point. But work at high temperature lags behind. In 
the past, some eff0rt.s have been made to study the thermal dependence of resistivity 
but most authors have considered that the pseudopotential matrix elements remain 
unchanged on thermal expansion (for reviews see Faber 1972, Shimoji 1977). But it is 
desirable that both structure factors and the pseudopotential matrix elements should be 
considered temperature-dependent in order to ascertain the applicability of Ziman’s 
formula at elevated temperatures. By taking such effects into account, we have inves- 
tigated the thermal dependence of the electrical resistivity and thermo-electric power of 
monovalent (Na, K), divalent (Zn), trivalent (Al) and tetravalent (Pb) liquids metals. 

4.1. Electrical resistivity 

Ziman (1961) showed that if the scattering of conduction electrons in liquid metals is 
treated in the Born approximation, then the resistivity R can be expressed as 

where e is the electronic charge, VF is the Fermi velocity, kF = (3n2Z/S20)1/3 is the Fermi 
wavevector, Q0 = N / Q  is the atomic volume and k and q are electron and phonon 
wavevectors. S ( q )  is the static structure factor and W(k,  q)  are the screened pseu- 
dopotential matrix elements. In order to study the thermal dependence of R ,  one needs 
to know S ( q )  and W(k,  q)  as functions of temperature. The S(q)-Tdependence has been 
discussed in detail in § 2 and it is this information which has prompted us to undertake 
the study of the present section. The values of W ( k ,  q)  as a function of temperature have 
been obtained using the energy-dependent non-local optimised model potential of Shaw 
(1968) because the latter has proved very successful in the study of electronic transport 
properties at the melting point. 

The Shaw (1968) optimised model potential is in essence an improvement upon the 
well known Heine-Abarenkov (1964) form of the potential. In the former approach, 
the screened non-local pseudopotential matrix elements can be expressed as 

with 
l o  
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where ~ ( q )  is the usual static Hartree dielectric function and G(q) is the correction factor 
which arises due to exchange and correlation effects of the conduction electrons, for 
which the Vashishta and Singwi (1972) expression has been considered. Also p is the 
depletion hole and lo is the highest angular momentum to be modelled. For a given 
angular momentum, the energy-dependent model parameters A,(E) and &(E) were 
determined by matching the logarithmic derivative of the wavefunction at the boundary, 
which in turn yield crystal parameters at E = E,. 

W(k,  q )  have been computed through equation (12) in cylindrical coordinates fol- 
lowing the work of Harrison (1966) at Ik + q1 = /kl = k,. The atomic volume Q0 and k,  
have been chosen appropriate to the temperature of investigation. The temperature- 
dependent values of W(k,q )  and S(q) are now subjected to equation (10) to infer 
electrical resistivity as a function of temperature. 

The values of electrical resistivity computed as a function of temperature for Na, K, 
Zn, A1 and Pb are displayed in figure 2 and are compared with the experimental 
observations (for Na and K (Freund 1969); for Zn, A1 and Pb (Roll and Motz 1957)). The 
resistivity of these liquid metals increases almost linearly with increasing temperature. 
Theory and experiment agree well near the melting point but the discrepancies widen 
at high temperatures. The results for K and Zn provide a better picture than for Na, A1 
and Pb. It is obvious that Ziman’s formula predicts the linear dependence of R but is 
unsuccessful in yielding the magnitude of the gradient (13R/a 7‘). The computed values 
of the resistivity coefficient 

a = [ R ( T )  - R(Tm)I/(T - Tm)R(Tm) (16) 

are tabulated in table 4 along with experimental values. Except for K and Zn, the 
resistivity coefficients computed for other metals are much smaller than the experimental 
values. There are many possible causes for the discrepancies. First the experimental 
data on electrical resistivity itself are not unique (Cusack 1987). But nonetheless if we 
assume the validity of the experimental data then the following discussion follows. 

In order to obtain closer agreement at high temperatures, one requires larger values 
of(S(q)/W(k, q)I2), whichmeansthatS(q)and W(k,  q)shouldbegreaterthanthepresent 
values. Even the use of measured S ( q )  in the calculation of resistivity is not expected to 
improve the result as the observed and computed S ( q )  are in very good agreement in 
the temperature range of our investigation. As the probability of error in S ( q )  is very 
small, the improvement is only possible through W ( k ,  4). But such a large discrepancy 
is not expected to be lessened through any sort of improvement in W(k,  4). Then what 
we are left with is the weaknesses inherent in Ziman’s (1961) formula. It is likely that at 
temperatures above the melting point, the kinetic energy of the particles increases, 
which gives rise to strong scattering in the system. If that is the case, then the latter might 
be responsible for the observed discrepancies because Ziman’s formula does not take 
into account strong scattering. 

The result for sodium is more surprising to us. There is almost exact agreement near 
the melting point but the discrepancy increases with increasing temperature. Being 
monovalent, Na is known for its simplicity and has been a favourite candidate for the 
application of pseudopotential theory near the melting point. In spite of the fact that 
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Figure 2. Temperature dependence of electrical resistivity of Na, K,  Zn, AI and Pb: full 
circles and full curves, theory; triangles and broken curves, experimental values (Na and K 
(Freund 1969); Zn, AI and Pb (Roll and Motz 1957)). 

Table 4. Resistivity coefficient of liquid metals. 

Electrical resistivity coefficient (K-I) 

Metal (Ytheor me,,, x 10-3 

Na 2.9 5.7 
K 5.7 4.27 
Zn -0.026 -0.084 
AI 0.144 0.475 
Pb 0.131 0.534 

both W ( k ,  q )  and S(q) have been considered temperature-dependent, we have failed to 
obtain a desired gradient for Na. In view of this, we emphasise that the other properties 
of sodium at higher temperature should be carefully analysed. 
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Table 5. Thermo-electric power coefficient of liquid metals. 

Thermo-power coefficients 

Metal Temp. (K) xtheor xexpt 

Na 373 
513 

K 338 
408 

Zn 143 
903 

AI 976 
1302 

Pb 613 
1053 

2.80 
2.87 

2.50 
2.53 

-2.55 
-2.41 

1.056 
1.23 

2.73 
2.77 

2.12a 
2.14” 

3.42a 
3.32“ 

-0.20b 
-0.44b 

0.955b 
0.957b 

2.11b 
2.115b 

a Kendall(l968). 
Marwaha and Cusack (1966). 

4.2. Thermo-electric power 

At a given temperature T ,  the thermo-electric power Q can be written as (Bradley et a1 
1962) 

Q = - ( n 2 w 3 i e i ) ( a  (17) 

where the terms have their usual meaning. The bracketed term on the right-hand side is 
called the thermo-power coefficient (9. Applying equation (10) to equation (17) one 
readily obtains 

X = 3 - 2 P  - r/2 

p = I W(kF , 2kF )12S(2kF)/(S(q)l W(kF , 4 )  1 * )  

(18) 

(19) 

= k F ( a ( q > ( a / a k > i W ( k ,  q)12)kF/(s(q)IW(kF, q)I2) (20) 

where ( ) stands for the same as in equation (11). Here r results from the energy 
dependence of the pseudopotential and is usually very small. In order to understand 
X-T behaviour qualitatively, here we have dropped the r term. 

The computed values of Xfo r  Na, K, Zn, A1 and Pb are tabulated in table 5 along 
with experimental observations. The theoretical values of Na, K, A1 and Pb are in 
reasonable agreement with the experimental values. The values of X for Zn are much 
lower than the observed values but the correct sign has been reproduced. It is obvious 
that, unlike electrical resistivity, X depends only moderately on temperature and thus 
could be explained by the theory. The R-T discrepancy is being overcome here due to 
the term ( e  In R ( E ) / ~ I E ) ~ = ~ ~ .  

5. Conclusions 

The present study on the reversible thermal dependence of the static structure factor 
S ( q )  and the transport properties of liquid metals suggest the following: 



Structure of liquid metals 1705 

(i) It is possible to obtain the S ( q )  values of liquid metals at different temperatures 
with fair success by using the experimentally observed values of the same at any given 
temperature. 

(ii) The principal peak heights in S ( q )  obtained at the melting point seem to depend 
moderately on the corresponding solid-phase crystal structure. The computed values of 
the principal peak heights are slightly lower than those obtained from Verlet’s freezing 
rule. 

(iii) Ziman’s formula of electrical resistivity yields small values for the resistivity 
coefficient for Na, A1 and Pb even though the pseudopotential matrix elements and the 
structure factors are duly considered temperature-dependent. 

(iv) The thermo-electric power depends moderately on temperature and could be 
explained successfully on the basis of Ziman’s formula. 
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